当前位置: 首页  师资队伍  教授(研究员)
柴晓利
发布时间 : 2016-06-08


专业技术职务: 教授

博士/硕士导师: 博士、硕士生导师

电话: 13816219468

电子邮箱:xlchai@tongji.edu.cn

所在系所(部门):环境工程系

主要研究方向:水体生态修复技术、固体废物处理处置与资源化

主讲课程:环境工程学(固体废物)



教育经历

1987-1991,东北师范大学化学系,获理学学士学位

1997-2000,南京理工大学环境科学与工程系,获工学硕士学位

2000-2003,同济大学环境科学与工程学院,获工学博士学位


工作经历

20003年7月-同济大学环境科学与工程学院

2002年1月-6月,希腊亚里士多德大学化学系合作研究

2005年5月-2006年5月,日本九州大学访问学者

2010年7月-9月,美国伊利诺伊大学香槟分校访问


科研项目     

1)国家自然科学基金面上项目,51678427,基于植被与覆盖土复合传输机制的填埋场汞释放通量预测模型构建,2017.1-2020.12,64万,在研,主持。

2) 国家自然科学基金面上项目,51478327,基于植被与覆盖土传输机制的甲烷释放预测模型构建,2015.1-2018.12,92万,在研,主持。

3)国家科技部重大国际合作项目,填埋场甲烷减排与资源化技术设备研发及应用,2015.4-2018.3,90万,在研,子课题负责人。

4)国家自然科学基金面上项目,51278357,填埋场覆盖土-植被-大气间汞的交换机制对汞的形态分布及释放通量的影响研究,2013.1-2016.12,56万,已结题,主持。

5)国家科技部重大专项项目,2013ZX07315-002,城市污水处理厂污泥处理处置技术装备产业化,2013.1-2016.6,2780万,在研,主持。

6)国家科技部重大国际合作项目,基于有机残渣与飞灰共处置的脱氯技术,2013.1-2015.12,60万,已结题,主持。

7)国家自然科学基金国际合作项目,51110342,填埋场温室气体的释放机制与控制技术研究,2012.04-2014.12,40万,已结题,主持。

8) 国家自然基金面上项目,51078285,填埋场植被与覆盖土复合作用对甲烷释放影响机制研究,2010.1-2013.12,37万,已结题,主持。

9)日本环境省国际合作项目,非规范填埋场安全、环境稳定性评估体系研究,2010.7-2011.7,120万,已结题,主持。

10) 日本经济产业省国际合作项目,垃圾焚烧灰渣在水泥工厂中的资源化利用技术,2019.7-2010.7,已结题,280万,主持。

11)国家自然基金面上项目,20877057,填埋场甲烷化时期腐殖质与汞的非生物作用对其形态分布和释放规律的影响,2009.1-2011.12,28万,已结题,主持。


代表学术论文

1) Free-conditioning dewatering of sewage sludge through in situ propane hydrate formation, Water Research 145 (2018): 464-472

2)  Development of sludge-derived mesoporous material with loaded nano CaO2  and doped Fe for re-utilization of dewatered waste-activated sludge as  dewatering aids, Chemical Engineering Journal, 2018, 335: 161-168.

3)  Mechanism insights into bio-floc bound water transformation based on  synchrotron X-ray computed microtomography and viscoelastic acoustic  response analysis, Water Research, 2018, 142: 480-489.

4)  Development of sludge-derived mesoporous material with loaded nano CaO2  and doped Fe for re-utilization of dewatered waste-activated sludge as  dewatering aids, Chemical Engineering Journal, 2017.10.3, 335: 161~168.     

5)  Exploring the potential of iTRAQ proteomics for tracking the  transformation of extracellular proteins from enzyme-disintegrated waste  activated sludge, Bioresource Technology, 2017.2, 225: 75~83.  

6)  Occurrence State and Molecular Structure Analysis of Extracellular  Proteins with Implications on the Dewaterability of Waste-Activated  Sludge, Environmental Science & Technology, 2017.8.15, 51(16):  9235~9243.  

7)  Simultaneous enhancement of sludge dewaterability and removal of  sludge-borne heavy metals through a novel oxidative leaching induced by  nano-CaO2, Environmental Science And Pollutton Research, 2017.7, 24(19):  16263~16275.  

8)  Characterization of chlorine and heavy metals for the potential  recycling of bottom ash from municipal solid waste incinerators as  cement additives. Frontiers of Environmental Science & Engineering,  2016, 10(4): 1-9. IF, 1.799.

9)  Development of montmorillonite-supported nano CaO2 for enhanced  dewatering of waste-activated sludge by synergistic effects of  filtration aid and peroxidation. Chemical Engineering Journal, 2016. IF,  5.310.

10)  Enhanced nutrient removal from lake water via biodegradation of poly  (L-lactide)/poly (3-hydroxybutyrate-co-4-hydroxybutyrate) blends. RSC  Advances, 2016, 6(8): 6528-6539. IF, 3.289.

11)  Enhanced dewatering of waste-activated sludge by composite hydrolysis  enzymes. Bioprocess and Biosystems Engineering, 2016, 39(4): 627-639.  IF, 1.901.

12)  Field study of nitrous oxide production with in situ aeration in a  closed landfill site. Journal of the Air & Waste Management  Association, 2016, 66(3): 280-287. IF, 1.613.

13)  Hybrid cement-assisted dewatering, solidification and stabilization of  sewage sludge with high organic content. Journal of Material Cycles and  Waste Management, 2016, 18(2): 356-365. IF, 1.422.

14)  Methane emissions as energy reservoir: Context, scope, causes and  mitigation strategies. Progress in Energy and Combustion Science, 2016,  56: 33-70. IF, 16.784.

15)  Novel insights into enhanced dewatering of waste activated sludge based  on the durable and efficacious radical generating. Journal of the Air  & Waste Management Association, 2016. IF, 1.613.

16)  Site specific diel methane emission mechanisms in landfills: A field  validated process based on vegetation and climate factors. Environmental  Pollution, 2016. IF, 4.839.

17)  Environmental impacts of a large-scale incinerator with mixed MSW of  high water content from a LCA perspective. Journal of Environmental  Sciences, 2015, 30: 173-179. IF, 2.208.

18)  Effective landfill gas management strategies for methane control and  reuse technology. Journal of Renewable and Sustainable Energy, 2015,  7(4): 041511. IF, 0.961.

18)  Greenhouse gas emission and its potential mitigation process from the  waste sector in a large-scale exhibition. Journal of Environmental  Sciences, 2015, 31: 44-50. IF, 2.208.

19)  Total mercury and methylmercury distributions in surface sediments from  Kongsfjorden, Svalbard, Norwegian Arctic. Environmental Science and  Pollution Research, 2015, 22(11): 8603-8610. IF, 2.760.

20)  The dependence of the methylation of mercury on the landfill  stabilization process and implications for the landfill management.  Chemosphere, 2015, 119:828–834. IF, 3.698.

21)  Characterization of microalgae-bacteria consortium cultured in landfill  leachate for carbon fixation and lipid production. Bioresource  Technology, 2014, 156(2):322–328. IF, 4.917.

22)  Characteristics of light regime on biofixation of carbon dioxide and  growth of Scenedesmus obliquus with light-emitting diodes. Journal of  Renewable and Sustainable Energy, 2014, 6(3): 033104. IF, 0.961.

23)  Enhanced dewatering characteristics of waste activated sludge with  Fenton pretreatment: effectiveness and statistical optimization.  Frontiers of Environmental Science & Engineering, 2014, 8(2):  267-276. IF, 1.799.

24)  Influence of aeration modes on leachate characteristic of landfills  that adopt the aerobic–anaerobic landfill method[J]. Waste Management,  2014, 34(1): 101-111. IF, 3.829.

25)  Indicating landfill stabilization state by using leachate property from  Laogang Refuse Landfill. Frontiers of Environmental Science &  Engineering, 2014, 8(3): 405-410. IF, 1.799.

26)  Characterization of controlled low-strength material obtained from  dewatered sludge and refuse incineration bottom ash: Mechanical and  microstructural perspectives. Journal of Environmental Management, 2013,  129: 183-189. IF, 3.131.

27)  Emission characteristics and air–surface exchange of gaseous mercury at  the largest active landfill in Asia. Atmospheric Environment, 2013, 79:  188-197. IF, 3.459.

28)  Inhibitory effects of a shock load of Fe (II)-mediated persulfate  oxidation on waste activated sludge anaerobic digestion. Chemical  Engineering Journal, 2013, 233: 274-281. IF, 5.310.

29)  Spectroscopic studies of the effect of aerobic conditions on the  chemical characteristics of humic acid in landfill leachate and its  implication for the environment. Chemosphere, 2013, 91(7):1058–1063. IF,  3.698.

30)  The effect of aerobic conditions on the complexation ability between  mercury and humic acid from landfill leachate and its implication for  the environment. Chemosphere, 2013, 92(4):458–463. IF, 3.698.

31)  The effect of aeration position on the spatial distribution and  reduction of pollutants in the landfill stabilization process–a pilot  scale study. Waste Management & Research, 2013, 31(1): 41-49. IF,  1.338.

32)  Abiotic association of phthalic acid esters with humic acid of a sludge  landfill. Frontiers of Environmental Science & Engineering, 2012,  6(6): 778-783. IF, 1.799.

33)  Complexion between mercury and humic substances from different landfill  stabilization processes and its implication for the environment.  Journal of Hazardous Materials, 2012, 59-66. IF, 4.836.

34)  Enhanced removal of carbon dioxide and alleviation of dissolved oxygen  accumulation in photobioreactor with bubble tank. Bioresouce Technology,  2012, 360-365. IF, 4.917.

35)  Enhanced dewaterability of sewage sludge in the presence of Fe  (II)-activated persulfate oxidation. Bioresource Technology, 2012, 116:  259-265. IF, 4.917.

36)  Fluorescence excitation–emission matrix combined with regional  integration analysis to characterize the composition and transformation  of humic and fulvic acids from landfill at different stabilization  stages. Waste Management, 2012, 32(3): 438-447. IF, 3.829.

37)  Novel insights into enhanced dewaterability of waste activated sludge  by Fe (II)-activated persulfate oxidation[J]. Bioresource Technology,  2012, 119: 7-14. IF, 4.917.

38)  Synergetic pretreatment of waste activated sludge by Fe (II)–activated  persulfate oxidation under mild temperature for enhanced dewaterabilit.  Bioresource Technology, 2012, 124: 29-36. IF, 4.917.

39)  Characteristics of vegetation and its relationship with landfill gas in  closed landfill. Biomass and Bioenergy, 2011, 35(3): 1295-1301. IF,  3.249.

40)  Abiotic association of PAEs with humic substances and its influence on  the fate of PAEs in landfill leachate. Chemosphere, 2010,11: 1362-1367.  IF, 3.698.

41)  Characteristics of environmental factors and their effects on CH4 and  CO2 emissions from a closed landfill: an ecological case study of  Shanghai. Waste Management, 2010, 30(3): 446-451. IF, 3.829.

42)  Effect of bio-column composed of aged refuse on methane abatement–A  novel configuration of biological oxidation in refuse landfill. Journal  of Environmental Sciences, 2010, 22(5): 769-776. IF, 2.208.

43)  Solid phase extraction of trace Hg (II) on silica gel modified with  2-(2-oxoethyl) hydrazine carbothioamide and determination by ICP-AES.  Talanta, 2010, 82(5): 1791-1796. IF, 4.035.

44)  Characterization of refuse landfill leachates of three different stages  in landfill stabilization process. Journal of Environmental Sciences,  2009, 21(9): 1309-1314. IF, 2.208.

45)  Landfill refuse stabilization process characterized by nutrient change.  Environmental Engineering Science, 2009, 26(11): 1655-1660. IF, 1.481.

46)  Size-fractionation and characterization of landfill leachate and the  improvement of Cu2+ adsorption capacity in soil and aged refuse. Waste  Management, 2009, 29(1): 143-152. IF, 3.829.

47)  Characterization of humic and fulvic acids extracted from landfill by  elemental composition, 13 C CP/MAS NMR and TMAH-Py-GC/MS. Waste  Management, 2008, 28(5): 896-903. IF, 3.829.

48)  Characteristics and mobility of heavy metals in an MSW landfill:  Implications in risk assessment and reclamation. Journal of Hazardous  Materials, 2007, 144(1): 485-491. IF, 4.836.

49)  Spectroscopic studies of the progress of humification processes in  humic substances extracted from refuse in a landfill. Chemosphere, 2007,  69(9): 1446-1453. IF, 3.698.

50) Adsorption of phenolic compound by aged-refuse. Journal of Hazardous Materials, 2006, 137(1): 410-417. IF, 4.836.


主要专著

1)《Pollution control and resource reuse of bottom ash and fly ash》,2016年出版。

2)《Pollution Control and Resource Reuse for Municipal Solid Wastes at Landfill》,2016年出版。

2)《Municipal Solid Waste Management in Asia and the Pacific Islands》,2014年出版。

3)《Stability evaluation for substandard dumping sites of municipal solid waste》(日文),2013年出版。


获奖 

1)生活垃圾资源化利用技术,国家2013年科技进步二等奖

2)生活垃圾资源化利用技术,教育部2011年科技进步一等奖

3)大宗碱溶性金属废物碱介质提取技术与产业化应用,上海市2010年技术发明二等奖

4)生活垃圾填埋场垃圾与土地利用技术,住房与城乡建设部2008年科技进步奖(华夏奖)三等奖

5)垃圾资源化循环利用关键技术与应用,上海市2007年技术发明三等奖

6)垃圾生物反应床处理生活垃圾渗滤液工艺及工程应用,2007年高等学校技术发明二等奖

7)大型滩涂型生活垃圾填埋场填埋与运营关键技术研究,上海市2004年科技进步二等奖



版权所有:同济环境科学与工程学院   联系电话: 021—65983869  

    Copyright © 2016 All Rights Reserved  技术支持:上海维程